Published 2011
| Version v1
Journal article
Exact Algorithms for L(2,1)-Labeling of Graphs
Contributors
Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Applied Mathematics (KAM) (KAM) ; Univerzita Karlova v Praze
- Laboratoire d'Informatique Théorique et Appliquée (LITA) ; Université de Lorraine (UL)
- Laboratoire d'Informatique Fondamentale d'Orléans (LIFO) ; Université d'Orléans (UO)-Ecole Nationale Supérieure d'Ingénieurs de Bourges
Description
The notion of distance constrained graph labelings, motivated by the Frequency Assignment Problem, reads as follows: A mapping from the vertex set of a graph $G=(V,E)$ into an interval of integers $\{0, \dots ,k\}$ is an $L(2,1)$-labeling of $G$ of span $k$ if any two adjacent vertices are mapped onto integers that are at least 2 apart, and every two vertices with a common neighbor are mapped onto distinct integers. It is known that for any fixed $k\ge 4$, deciding the existence of such a labeling is an NP-complete problem. We present exact exponential time algorithms that are faster than the naive $O^*((k+1)^n)$ algorithm that would try all possible mappings. The improvement is best seen in the first NP-complete case of $k=4$, where the running time of our algorithm is $O(1.3006^n)$. Furthermore we show that dynamic programming can be used to establish an $O(3.8730^n)$ algorithm to compute an optimal $L(2,1)$-labeling.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00460873
- URN
- urn:oai:HAL:hal-00460873v1
Origin repository
- Origin repository
- UNICA