Published July 16, 2018
| Version v1
Conference paper
On the Maximal Number of Real Embeddings of Spatial Minimally Rigid Graphs
Contributors
Others:
- AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
- Research Institute for Symbolic Computation (RISC) ; Johannes Kepler Universität Linz (JKU)
- Polynomial Systems (PolSys) ; Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LIP6 ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN) ; Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- This work is part of the project ARCADES that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675789. ET is partially supported by ANR JCJC GALOP (ANR-17-CE40-0009).
- Carlos Arreche
- ANR-17-CE40-0009,GALOP,Jeux à travers la lentille de algèbre et géométrie de l'optimisation(2017)
- European Project: 675789,H2020 Pilier Excellent Science,H2020-MSCA-ITN-2015,ARCADES(2016)
Description
The number of embeddings of minimally rigid graphs in $\mathbb{R}^D$ is (by definition) finite, modulo rigid transformations, for every generic choice of edge lengths. Even though various approaches have been proposed to compute it, the gap between upper and lower bounds is still enormous. Specific values and its asymptotic behavior are major and fascinating open problems in rigidity theory.Our work considers the maximal number of real embeddings of minimally rigid graphs in $\mathbb{R}^3$. We modify a commonly used parametric semi-algebraic formulation that exploits the Cayley-Menger determinant to minimize the {\em a priori} number of complex embeddings, where the parameters correspond to edge lengths. To cope with the huge dimension of the parameter space and find specializations of the parameters that maximize the number of real embeddings, we introduce a method based on coupler curves that makes the sampling feasible for spatial minimally rigid graphs.Our methodology results in the first full classification of the number of real embeddings of graphs with 7 vertices in $\mathbb{R}^3$, which was the smallest open case. Building on this and certain 8-vertex graphs, we improve the previously known general lower bound on the maximum number of real embeddings in $\mathbb{R}^3$.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01710518
- URN
- urn:oai:HAL:hal-01710518v2
Origin repository
- Origin repository
- UNICA