Published 2024 | Version v1
Journal article

Analyzing and Comparing Deep Learning models on a ARM 32 bits microcontroller for pre-impact fall detection

Others:
Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
Équipe Instrumentation embarquée et systèmes de surveillance intelligents (LAAS-S4M) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
Service Informatique : Développement, Exploitation et Assistance (LAAS-IDEA) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)

Citation

An error occurred while generating the citation.

Description

Automated pre-impact fall detection in real-time using raw data acquired from wearable sensors, such as tri-axial accelerometers, remains an open research problem in the context of elderly care. This paper presents a comparative study of nine neural network models, including Dense, CNN, LSTM, GRU, BiLSTM, BiGRU, CNN Dense, CNN LSTM, and CNN GRU, for predicting an occurring fall before impact with the ground using accelerometer data. The models were optimized using Keras Tuner with the TensorFlow backend, a dominant deep learning software framework. Machine learning classifiers suitable for execution on microcontrollers were built and evaluated based on performance metrics such as accuracy, sensitivity, specificity, storage size, inference time, and energy consumption. The results highlight that the CNN DENSE algorithm provides the best detection accuracy (94.70%) with a lead time of 76.91 ms. Sensitivity and specificity reach 95.33% and 94.18%. The energy consumption and inference time are 6.72 mA and 12.88 ms, respectively. In conclusion, deep learning demonstrates increased classification accuracy and a simplified software architecture, but it comes at the cost of decreased energy efficiency and inference speed. These factors are crucial considerations in developing on-demand fall injury prevention wearable systems.

Abstract

International audience

Additional details

Created:
February 25, 2024
Modified:
February 25, 2024