Published July 6, 2022
| Version v1
Conference paper
Convolution et marqueurs multidimensionnels. Description des représentations genrées dans un corpus de films français
- Others:
- BCL, équipe Logométrie : corpus, traitements, modèles ; Bases, Corpus, Langage (UMR 7320 - UCA / CNRS) (BCL) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-21-CE38-0012,TRACTIVE,Vers une analyse multimodale automatique de l'esthétique discursive filmique(2021)
Description
Convolutional neural networks allow new representations of texts that extend the standard statistical approaches. By combining frequency and context of words as well as allowing multidimensional treatments (graphical form, lemma and part of speech), convolution leads to the extraction of motifs, i.e. complex linguistic patterns that are likely to feed interpretation. In this paper, this architecture is tested on movie scripts in order to explore the hypothesis of a gendered differentiation of female and male dialogues.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03783938
- URN
- urn:oai:HAL:hal-03783938v1
- Origin repository
- UNICA