Published September 15, 2008 | Version v1
Conference paper

Revisiting the upper bounding process in a safe Branch and Bound algorithm

Others:
Laboratoire d'Informatique de Nantes Atlantique (LINA) ; Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
Département d'Informatique [Oran] ; Université des sciences et de la Technologie d'Oran Mohamed Boudiaf [Oran] (USTO MB)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe CEP ; Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
P.J. Stuckey
ANR-07-SESU-0003,CAVERN,Contraintes et abstraction pour la vérification des programmes(2007)

Description

Finding feasible points for which the proof succeeds is a critical issue in safe Branch and Bound algorithms which handle continuous problems. In this paper, we introduce a new strategy to compute very accurate approximations of feasible points. This strategy takes advantage of the Newton method for under-constrained systems of equations and inequalities. More precisely, it exploits the optimal solution of a linear relaxation of the problem to compute efficiently a promising upper bound. First experiments on the Coconuts benchmarks demonstrate that this approach is very effective.

Abstract

Optimization, continuous domains, nonlinear constraint problems, safe constraint based approaches

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023