About a Brooks-type theorem for improper colouring
- Others:
- Departamento do Computacao [Fortaleza BR] ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Applied Mathematics (KAM) (KAM) ; Univerzita Karlova v Praze
- Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA) ; Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Description
A graph is k-improperly -colourable if its vertices can be partitioned into parts such that each part induces a subgraph of maximum degree at most k. A result of Lovasz a states that for any graph G, such a partition exists if l is at least (Δ(G)+1)/(k+1) . When k = 0, this bound can be reduced by Brooks' Theorem, unless G is complete or an odd cycle. We study the following question, which can be seen as a generalisation of the celebrated Brooks' Theorem to improper colouring: does there exist a polynomial-time algorithm that decides whether a graph G of maximum degree Δ has k-improper chromatic number at most (Δ+1)/(k+1) - 1? We show that the answer is no, unless P = N P , when Δ= (k + 1)l, k>0 and l+√l < 2k + 4. We also show that, if G is planar, k = 1 or k = 2, Δ = 2k + 2, and l= 2, then the answer is still no, unless P = N P . These results answer some questions of Cowen et al. [Journal of Graph Theory 24(3):205-219, 1997].
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00223009
- URN
- urn:oai:HAL:inria-00223009v4
- Origin repository
- UNICA