Published 2013
| Version v1
Journal article
Self-improving bounds for the Navier-Stokes equations
Creators
Contributors
Others:
- Laboratoire Jacques-Louis Lions (LJLL) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to -1. Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.
Abstract
11 pages, updated referencesAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00936366
- URN
- urn:oai:HAL:hal-00936366v1
Origin repository
- Origin repository
- UNICA