Published October 2017 | Version v1
Journal article

Allied: A Framework for Executing Linked Data- Based Recommendation Algorithms

Others:
Dipartimento di Automatica e Informatica [Torino] (DAUIN) ; Politecnico di Torino = Polytechnic of Turin (Polito)
Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Universidad del Cauca [Popayán]

Description

The increase in the amount of structured data published on the Web using the principles of Linked Data means that now it is more likely to find resources on the Web of Data that represent real life concepts. Discovering and recommending resources on the Web of Data related to a given resource is still an open research area. This work presents a framework to deploy and execute Linked Data based recommendation algorithms to measure their accuracy and performance in different contexts. Moreover, application developers can use this framework as the main component for recommendation in various domains. Finally, this paper describes a new recommendation algorithm that adapts its behavior dynamically based on the features of the Linked Data dataset used. The results of a user study show that the algorithm proposed in this paper has better accuracy and novelty than other state- of-the-art algorithms for Linked Data.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 30, 2023