Published 2023
| Version v1
Journal article
MS-CLAM: Mixed Supervision for the classification and localization of tumors in Whole Slide Images
Contributors
Others:
- Université Côte d'Azur (UCA)
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- FHU OncoAge - Pathologies liées à l'âge [CHU Nice] (OncoAge) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Pharmacologie Moléculaire et Cellulaire [UNIV Côte d'Azur] (UPMC)-Université Côte d'Azur (UCA)
- Centre Hospitalier Universitaire de Nice (CHU Nice)
- Laboratoire de Pathologie Clinique et Expérimentale. Hôpital Pasteur [Nice] ; Hôpital Pasteur [Nice] (CHU)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
Given the size of digitized Whole Slide Images (WSIs), it is generally laborious and time-consuming for pathologists to exhaustively delineate objects within them, especially with datasets containing hundreds of slides to annotate. Most of the time, only slide-level labels are available, giving rise to the development of weakly-supervised models. However, it is often difficult to obtain from such models accurate object localization, e.g., patches with tumor cells in a tumor detection task, as they are mainly designed for slide-level classification. Using the attention-based deep Multiple Instance Learning (MIL) model as our base weakly-supervised model, we propose to use mixed supervision-i.e., the use of both slide-level and patch-level labels-to improve both the classification and the localization performances of the original model, using only a limited amount of patch-level labeled slides. In addition, we propose an attention loss term to regularize the attention between key instances, and a paired batch method to create balanced batches for the model. First, we show that the changes made to the model already improve its performance and interpretability in the weakly-supervised setting. Furthermore, when using only between 12 and 62% of the total available patch-level annotations, we can reach performance close to fully-supervised models on the tumor classification datasets DigestPath2019 and Camelyon16.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-03972289
- URN
- urn:oai:HAL:hal-03972289v1
Origin repository
- Origin repository
- UNICA