Published 1984
| Version v1
Journal article
A wave problem in a half-space with a unilateral constraint at the boundary
- Creators
- Lebeau, Gilles
- Schatzman, Michelle
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut Camille Jordan [Villeurbanne] (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Description
In this paper, we study the following problem: let $\Omega$ be a half-space of $\mathbb{R}^N$, defined by $\Omega = \{x = (x', x_N) \in\mathbb{R}^/x_N > \}$ where $x' = (x,\ldots, x_{N-1})$ is the usual notation, and let there be given functions $u_0\in H^1(\Omega)$ and $u_1 \in L^2(\Omega)$. We assume that $u_0|_{x_N=0}$ is nonnegative, and similarly $-(\partial u_0/\partial x_N)|_{x_N=0}$ (which is, a priori, an element of $H^{-1/2}(\mathbb{R}^{N-1})$) is nonnegative.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01294216
- URN
- urn:oai:HAL:hal-01294216v1
- Origin repository
- UNICA