A comparison of advanced semi-quantitative amyloid PET analysis methods
Description
Purpose: To date, there is no consensus on how to semi-quantitatively assess brain amyloid PET. Some approaches use late acquisition alone (e.g., ELBA, based on radiomic features), others integrate the early scan (e.g., TDr, which targets the area of maximum perfusion) and structural imaging (e.g., WMR, that compares kinetic behaviour of white and grey matter, or SI based on the kinetic characteristics of the grey matter alone). In this study SUVr, ELBA, TDr, WMR, and SI were compared. The latter — the most complete one — provided the reference measure for amyloid burden allowing to assess the efficacy and feasibility in clinical setting of the other approaches. Methods: We used data from 85 patients (aged 44–87) who underwent dual time-point PET/MRI acquisitions. The correlations with SI were computed and the methods compared with the visual assessment. Assuming SUVr, ELBA, TDr, and WMR to be independent measures, we linearly combined them to obtain more robust indices. Finally, we investigated possible associations between each quantifier and age in amyloid-negative patients. Results: Each quantifier exhibited excellent agreement with visual assessment and strong correlation with SI (average AUC = 0.99, ρ = 0.91). Exceptions to this were observed for subcortical regions with ELBA and WMR (ρELBA = 0.44, ρWMR = 0.70). The linear combinations showed better performances than the individual methods. Significant associations were observed between TDr, WMR, SI, and age in amyloid-negative patients (p < 0.05). Conclusion: Among the other methods, TDr came closest to the reference with less implementation complexity. Moreover, this study suggests that combining independent approaches gives better results than the individual procedure, so efforts should focus on multi-classifier systems for amyloid PET. Finally, the ability of techniques integrating blood perfusion to depict age-related variations in amyloid load in amyloid-negative subjects demonstrates the goodness of the estimate.
Additional details
- URL
- https://hdl.handle.net/11567/1153716
- URN
- urn:oai:iris.unige.it:11567/1153716
- Origin repository
- UNIGE