Limiting Global Warming by Improving Data-Centre Software
Description
Carbon emissions, greenhouse gases and pollution in general are usually related to traditional factories, so the most modern computing factories have gone unnoticed for the general-public opinion. We empirically show through extensive and realistic simulation that: 1) energy consumption, and consequently CO2 emissions, could be reduced from ~15% to ~60% if the correct energy-efficiency policies are applied; and 2) such energy-consumption reduction can be achieved without negatively impacting the correct operation of these infrastructures. To this end, this work is focused on the proposal and analysis of a set of energy-efficiency policies which are applied to traditional and hyper-scale data centres, as well as numerous operation environments, including: 1) the top resource managers used in industry; 2) eight energy-efficiency policies, including aggressive, fine-tuned and adaptive models; and 3) three types of workload-arrival patterns. Finally, we present a realistic analysis of the environmental impact of the application of such energy-efficiency policies on USA data centres. The presented results estimate that 11.5 million of tons of CO2 could be saved, which is equivalent to the removal of 4.79 million of combustion cars, that is, the total car fleet of countries such as Portugal, Austria and Sweden.
Abstract
Ministerio de Ciencia e Innovación RTI2018-098062-A-I00
Additional details
- URL
- https://idus.us.es/handle//11441/104518
- URN
- urn:oai:idus.us.es:11441/104518
- Origin repository
- USE