Published July 24, 2023
| Version v1
Journal article
Artificial reef effectiveness changes among types as revealed by underwater hyperspectral imagery
Contributors
Others:
- Ecology and Conservation Science for Sustainable Seas (ECOSEAS) ; Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
- Station de Biologie Marine de Concarneau ; Direction générale déléguée à la Recherche, à l'Expertise, à la Valorisation et à l'Enseignement-Formation (DGD.REVE) ; Muséum national d'Histoire naturelle (MNHN)-Muséum national d'Histoire naturelle (MNHN)
- Muséum national d'Histoire naturelle (MNHN)
- planblue GmbH (PlanBlue)
- THALASSA Marine Research & Environmental Awareness (Thalassa)
- Stazione Zoologica Anton Dohrn (SZN)
Description
Artificial reefs (ARs) are designed to mimic natural habitats and promote marine life. Their effectiveness is however debatable and can depend on factors such as structural complexity and construction material. Old artificial reefs (OARs) were made of concrete mold of simple geometric shapes, limiting their ability to mimic the complexity of natural reefs. Recent advancements in three-dimentional (3D)-printing technology have enabled the creation of 3D-printed artificial reefs (3DRs) with biocompatible material and complex structures that can better simulate the natural habitats. We employed underwater hyperspectral technology to estimate the performance of these reefs and compare the benthic photosynthetic signal of natural reefs (NATs) with those of ARs (OARs and 3DRs) in coastal area of the north-western Mediterranean (France and Monaco Principality). We expected differences in reflectance signals between OARs and NATs, and signals closer to NATs in 3DRs than OARs. Underwater hyperspectral technology was able to detect higher chlorophyll-a derived signals on NATs than OARs. Moreover, the magnitude of differences between 3DRs and NATs was smaller than that between OARs and NATs. Although ARs were not capable of mimicking natural reefs, the use of 3D-printed ARs might ameliorate their effectiveness for coastal reconciliation.
Additional details
Identifiers
- URL
- https://hal.science/hal-04170878
- URN
- urn:oai:HAL:hal-04170878v1
Origin repository
- Origin repository
- UNICA