Schwarz Waveform Relaxation Methods for Systems of Semi-Linear Reaction-Diffusion Equations
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
Description
Schwarz waveform relaxation methods have been studied for a wide range of scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are based on a space-time decomposition of the computational domain and the subdomain iteration uses an overlapping decomposition in space. There are only few convergence studies for non-linear PDEs. We analyze in this paper the convergence of Schwarz waveform relaxation applied to systems of semi-linear reaction-diffusion equations. We show that the algorithm converges linearly under certain conditions over long time intervals. We illustrate our results, and further possible convergence behavior, with numerical experiments.
Abstract
Domain decomposition methods in science and engineering XIX, LNCSE, Springer Verlag, 2010.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00491292
- URN
- urn:oai:HAL:hal-00491292v1
- Origin repository
- UNICA