Published July 16, 2023
| Version v1
Conference paper
Mechanistic modeling of the longitudinal tumor and biological markers combined with quantitative cell-free DNA
Contributors
Others:
- Méthodes computationnelles pour la prise en charge thérapeutique en oncologie : Optimisation des stratégies par modélisation mécaniste et statistique (COMPO) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Cancérologie de Marseille (CRCM) ; Aix Marseille Université (AMU)-Institut Paoli-Calmettes (IPC) ; Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut Paoli-Calmettes (IPC) ; Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Institut Laënnec ; Aix Marseille Université (AMU)
- Multidisciplinary Oncology and Therapeutic Innovations Unit / Service d'Oncologie Multidisciplinaire et d'Innovations Thérapeutiques (OMIT) ; Hôpital Nord [CHU - APHM]
- Laboratoire des Sciences de l'Information et des Systèmes (LSIS) ; Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
- Hôpital de la Timone [CHU - APHM] (TIMONE)
- ID Solutions [Grabels, France]
- Adelis Technologies
- Society for Mathematical Biology
Description
Early prediction of resistance to immunotherapy is a major challenge in oncology. The ongoing SChISM (Size Cell-fre DNA (cfDNA) Immunotherapies Signature Monitoring) clinical study proposes an innovative approach based on patented cfDNA quantification methods, providing concentration and size profile fluctuations of plasmatic circulating DNA for early therapeutic management of immune checkpoint inhibitors treated patients. The main interest is that such measures can be performed in a less invasive, less expansive way, and especially much earlier than the first imaging evaluation, thanks to liquid biopsies. Five cancer types are investigated: melanoma, head and neck, renal, bladder and lung cancers, with a total of 260 patients at the end of the study, described by their clinical and classical biological data, and cfDNA features, such as concentration, first and second peak of the cfDNA size distribution, and specific size ranges of cfDNA fragments. We developed a mechanistic model of cfDNA joint kinetics with other longitudinal markers and tumor size imaging to help describe and understand the time dynamics of the quantitative profiles of cfDNA over time. The model consists of a dynamical system of differential equations that estimates specifically the component corresponding to cfDNA production by tumor lesions. Subsequently, the model is embedded within a nonlinear mixed-effects statistical framework in order to quantify inter-patient variability, and calibrated on the data. Future perspective will use machine learning models to predict early progression, progression-free survival or overall survival, combining these dynamic parameters and other variables available at baseline
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-04388020
- URN
- urn:oai:HAL:hal-04388020v1
Origin repository
- Origin repository
- UNICA