Published July 6, 2022
| Version v1
Conference paper
Deep Learning for Model Correction in Cardiac Electrophysiological Imaging
Contributors
Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- ThereSIS lab - Thales
- Sorbonne Université (SU)
- Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN) ; Institut de Mathématiques de Bordeaux (IMB) ; Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC ; Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux]
- Criteo AI Lab ; Criteo [Paris]
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-10-IAHU-0004,LIRYC,L'Institut de Rythmologie et modélisation Cardiaque(2010)
- European Project: 715093,H2020,ERC-2016-STG,ECSTATIC(2017)
Description
Imaging the electrical activity of the heart can be achieved with invasive catheterisation. However, the resulting data are sparse and noisy. Mathematical modelling of cardiac electrophysiology can help the analysis but solving the associated mathematical systems can become unfeasible. It is often computationally demanding, for instance when solving for different patient conditions. We present a new framework to model the dynamics of cardiac electrophysiology at lower cost. It is based on the integration of a low-fidelity physical model and a learning component implemented here via neural networks. The latter acts as a complement to the physical part, and handles all quantities and dynamics that the simplified physical model neglects. We demonstrate that this framework allows us to reproduce the complex dynamics of the transmembrane potential and to correctly identify the relevant physical parameters, even when only partial measurements are available. This combined model-based and data-driven approach could improve cardiac electrophysiological imaging and provide predictive tools.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03687596
- URN
- urn:oai:HAL:hal-03687596v1
Origin repository
- Origin repository
- UNICA