Published November 23, 2017 | Version v1
Publication

Coverage induced regulation of Au nanoparticles during pulsed laser deposition

Description

The effects induced during the covering/embedding of metal nanoparticles (NPs) produced by pulsed laser deposition (PLD) and their impact on the structural and optical properties have been studied by producing pairs of samples containing Au NPs that are either uncovered (i.e., at the surface) or covered (i.e., embedded in an amorphous a-Al2O3 host). The main result is that covering species can sputter up to 100% of the Au atoms, the smaller the NPs the higher the sputtered fraction. This fraction has been simulated using standard models for ion bombardment and taking into account the kinetic energy distribution of arriving species and the cohesive energy dependence on NPs dimensions. Although all models well predict the order of magnitude of the sputtering yield, the calculated values are generally smaller than the experimental ones and do not account for the experimental dependence on NPs dimensions. This disagreement is discussed in terms of the limitations of standard models that do not take into account the lower adhesion of small NPs to the substrate, the high flux of species involved in PLD and, possibly to lesser extent, the use of some bulk material parameters. The metal sputtering during the coverage regulates the NPs morphology, through a reduction of dimensions and dimension dispersion. Most changes of structural features and optical spectra when covering the NPs are directly related to the variation in the amount of metal with the exception of a strong blueshift of the surface plasmon resonance when NPs are covered. This shift could be consistent with mixing of covering layer species and metal at the surface of the NPs.

Abstract

Gobierno de España MAT2009-14282- C02-01

Additional details

Created:
December 5, 2022
Modified:
November 29, 2023