Published August 8, 2006
| Version v1
Publication
Deriving a new domain decomposition method for the Stokes equations using the Smith factorization
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jacques-Louis Lions (LJLL) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Mathematics Department [Gottingen] (NAM) ; Georg-August-University = Georg-August-Universität Göttingen
Description
In this paper the Smith factorization is used systematically to derive a new domain decomposition method for the Stokes problem. In two dimensions the key idea is the transformation of the Stokes problem into a scalar bi-harmonic problem. We show, how a proposed domain decomposition method for the biharmonic problem leads to a domain decomposition method for the Stokes equations which inherits the convergence behavior of the scalar problem. Thus, it is sufficient to study the convergence of the scalar algorithm. The same procedure can also be applied to the three dimensional Stokes problem. As transmission conditions for the resulting domain decomposition method of the Stokes problem we obtain natural boundary conditions. Therefore it can be implemented easily. A Fourier analysis and some numerical experiments show very fast convergence of the proposed algorithm. Our algorithm shows a more robust behavior than Neumann-Neumann or FETI type methods.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00088830
- URN
- urn:oai:HAL:hal-00088830v1
Origin repository
- Origin repository
- UNICA