Published May 24, 2021 | Version v1
Conference paper

Adaptive parameter selection for weighted-TV image reconstruction problems

Others:
Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Dipartimento di Matematica [Bologna] ; Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
LC acknowledges the support of the Fondation Math´ematique Jacques Hadamard (FMJH). LC and MP are thankful to the organisers of the special trimester The mathematics of imaging held at the IHP (Paris, France) where part of this research was carried out and to G. Peyr´e for the financial support provided within the ERC project NORIA. Research of AL, MP and FS was supported by the "National Group for Scientific Computation (GNCS-INDAM)" and by the ex60 project "Funds for selected research topics".

Citation

An error occurred while generating the citation.

Description

We propose an efficient estimation technique for the automatic selection of locally-adaptive Total Variation regularisation parameters based on an hybrid strategy which combines a local maximum-likelihood approach estimating space-variant image scales with a global discrepancy principle related to noise statistics. We verify the effectiveness of the proposed approach solving some exemplar image reconstruction problems and show its outperformance in comparison to state-of-the-art parameter estimation strategies, the former weighting locally the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
December 1, 2023