Published January 21, 2002
| Version v1
Journal article
Large size dependence of exciton-longitudinal-optical-phonon coupling in nitride-based quantum wells and quantum boxes.
Contributors
Others:
- Groupe d'étude des semiconducteurs (GES) ; Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Actions Concertées Incitatives (ACI) du MENRT "BOQUANI" et "NANILUB".
- European Project: HPRN-CT-1999- 00132,CLERMONT
Description
We present an experimental and theoretical study of the size dependence of the coupling between electron–hole pairs and longitudinal-optical phonons in Ga1−xInxN/GaN-based quantum wells and quantum boxes. We found that the Huang–Rhys factor S, which determines the distribution of luminescence intensities between the phonon replicas and the zero-phonon peak, increases significantly when the vertical size of the boxes or the thickness of quantum well increases. We assign this variation to (1) the strong electric field present along the growth axis of the system, due to spontaneous and piezoelectricpolarizations in these wurtzite materials, and (2) the localization on separate sites of electrons and holes in the plane of the wells or boxes, due to potential fluctuations in the ternary alloy. Indeed, envelope-function calculations for free or localized excitons, with electron–hole distance only controlled by Coulomb interaction, do not account quantitatively for the measured behavior of the S factor. In fact, the latter is rather similar to what is obtained for donor–acceptor pairs, with a statistical distribution of distances between localization centers for electrons and holes.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01303257
- URN
- urn:oai:HAL:hal-01303257v1