Published June 24, 2015
| Version v1
Conference paper
Personalization of Cardiac Electrophysiology Model using the Unscented Kalman Filtering
Contributors
Others:
- Computational Anatomy and Simulation for Medicine (MIMESIS) ; Centre Inria de l'Université de Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube) ; École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE) ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE) ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- King's College London
- Cardiothoracic Centre ; Guy's and St Thomas' Hospital [London]
- Analysis and Simulation of Biomedical Images (ASCLEPIOS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- SOFA
Description
Cardiac electrophysiology mapping techniques now allow to record denser intra-operative electrograms (ECG). The patient-specific information extracted from these clinical recordings is extremely valuable. A growing field of research focuses on the personalization of electro-physiology models using this patient-specific information. The modeling in silico of a patient electrophysiology is needed to better understand the mechanism of cardiac arrhythmia. In the scope of ischemic cardiomyopa-thy, the predictive power of patient-specific simulations may also provide a substantial guidance in defining the optimal location of the implantable defibrillator, since all possible configurations could be tested in silico. This article describes an innovative personalization approach based on an unscented Kalman filter. Following an iterative process, the apparent conductivity is efficiently estimated in specific regions. A sensitivity analysis is performed to assess the filter parameters. With three patient cases, we finally demonstrate the accuracy and efficiency of our algorithm.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-01195719
- URN
- urn:oai:HAL:hal-01195719v1
Origin repository
- Origin repository
- UNICA