Published June 26, 2023 | Version v1
Publication

Fluorescent calixarene-schiff as a nanovehicle with biomedical purposes

Description

Gene therapy is a technique that is currently under expansion and development. Recent advances in genetic medicine have paved the way for a broader range of therapies and laid the groundwork for next-generation technologies. A terminally substituted difluorene-diester Schiff Base calix[4]arene has been studied in this work as possible nanovector to be used in gene therapy. Changes to luminescent behavior of the calixarene macrocycle are reported in the presence of ct-DNA. The calixarene macrocycle interacts with calf thymus DNA (ct-DNA), generating changes in its conformation. Partial double-strand denaturation is induced at low concentrations of the calixarene, resulting in compaction of the ct-DNA. However, interaction between calixarene molecules themselves takes place at high calixarene concentrations, favoring the decompaction of the polynucleotide. Based on cytotoxicity studies, the calixarene macrocycle investigated has the potential to be used as a nanovehicle and improve the therapeutic efficacy of pharmacological agents against tumors.

Abstract

Junta de Andalucía. Consejería de Conocimiento, Innovación y Universidades FQM-206, FQM-274, PY20-01234

Abstract

Universidad de Sevilla PP2019/00000748, RTI2018-100692-B-100; P18-RT-1271; PI18-0005-2018; VIPP AY.SUPLEM-2019; RYC-2015-18670

Abstract

Fondo Social Europeo

Abstract

Fundación ONCE

Abstract

European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)

Additional details

Created:
June 27, 2023
Modified:
November 30, 2023