Published January 5, 2011
| Version v1
Publication
Minimal decomposition of binary forms with respect to tangential projections
Creators
Contributors
Others:
- University of Trento [Trento]
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
Let $C\subset \mathbb{P}^n$ be a rational normal curve and let $\ell_O:\mathbb{P}^{n+1}\dashrightarrow \mathbb{P}^n$ be any tangential projection form a point $O\in T_AC$ where $A\in C$. Hence $X:= \ell_O(C)\subset \mathbb{P}^n$ is a linearly normal cuspidal curve with degree $n+1$. For any $P = \ell_O(B)$, $B\in \mathbb{P}^{n+1}$, the $X$-rank $r_X(P)$ of $P$ is the minimal cardinality of a set $S\subset X$ whose linear span contains $P$. Here we describe $r_X(P)$ in terms of the schemes computing the $C$-rank or the border $C$-rank of $B$.
Abstract
7 pagesAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-00645983
- URN
- urn:oai:HAL:hal-00645983v1
Origin repository
- Origin repository
- UNICA