Gradient based Approximate Joint Diagonalization by Orthogonal Transforms
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- SUPPORTED BY THE EU BY A MARIE-CURIE FELLOWSHIP (EST-SIGNAL PROGRAM : HTTP://EST-SIGNAL.I3S.UNICE.FR) UNDER CONTRACT NO MEST-CT-2005-021175.
Description
Approximate Joint Diagonalization (AJD) of a set of symmetric matrices by an orthogonal transform is a popular problem in Blind Source Separation (BSS). In this paper we propose a gradient based algorithm which maximizes the sum of squares of diagonal entries of all the transformed symmetric matrices. Our main contribution is to transform the orthogonality constrained optimization problem into an unconstrained problem. This transform is performed in two steps: First by parameterizing the orthogonal transform matrix by the matrix exponential of a skew-symmetric matrix. Second, by introducing an isomorphism between the vector space of skew-symmetric matrices and the Euclidean vector space of appropriate dimension. This transform is then applied to a gradient based algorithm called GAEX to perform joint diagonalization of a set of symmetric matrices.
Abstract
5 pages
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00339522
- URN
- urn:oai:HAL:hal-00339522v1
- Origin repository
- UNICA