Slow to fast infinitely extended reservoirs for the symmetric exclusion process with long jumps
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Instituto Superior Técnico, Universidade Técnica de Lisboa (IST)
- ANR-14-CE25-0011,EDNHS,Diffusion de l'énergie dans des systèmes hamiltoniens bruitésés(2014)
- ANR-15-CE40-0020,LSD,Modèles stochastiques en grande dimension pour la physique statistique hors équilibre(2015)
- European Project: 715734,H2020,HyLEF(2016)
Description
We consider an exclusion process with long jumps in the box $\Lambda_N=\{1, \ldots,N-1\}$, for $N \ge 2$, in contact with infinitely extended reservoirs on its left and on its right. The jump rate is described by a transition probability $p(\cdot)$ which is symmetric, with infinite support but with finite variance. The reservoirs add or remove particles with rate proportional to $\kappa N^{-\theta}$, where $\kappa>0$ and $\theta \in\mathbb R$. If $\theta>0$ (resp. $\theta<0$) the reservoirs add and fastly remove (resp. slowly remove) particles in the bulk. According to the value of $\theta$ we prove that the time evolution of the spatial density of particles is described by some reaction-diffusion equations with various boundary conditions.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01474718
- URN
- urn:oai:HAL:hal-01474718v2
- Origin repository
- UNICA