Strategic Resource Pricing and Allocation in a 5G Network Slicing Stackelberg Game
- Creators
- Datar, Mandar
- Altman, Eitan
- Le Cadre, Hélène
- Others:
- Laboratoire Informatique d'Avignon (LIA) ; Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
- Network Engineering and Operations (NEO ) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratory of Information, Network and Communication Sciences (LINCS) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU)
- Integrated Optimization with Complex Structure (INOCS) ; Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Description
We consider a marketplace in the context of 5G network slicing, where Application Service Providers (ASP), i.e., slice tenants, providing heterogeneous services, are in competition for the access to the virtualized network resource owned by a Network Slice Provider (NSP), who relies on network slicing. We model the interactions between the end users (followers) and the ASPs (leaders) as a Stackelberg game. We prove that the competition between the ASPs results in a multi-resource Tullock rent-seeking game. To determine resource pricing and allocation, we devise two innovative market mechanisms. First, we assume that the ASPs are pre-assigned with fixed shares (budgets) of infrastructure, and rely on a trading post mechanism to allocate the resource. Under this mechanism, the ASPs can redistribute their budgets in bids and customise their allocations to maximize their profits. In case a single resource is considered, we prove that the ASPs' coupled decision problems give rise to a unique Nash equilibrium. Second, when ASPs have no bound on their budget, we formulate the problem as a pricing game with coupling constraints capturing the shared resource finite capacities, and derive the market prices as the duals of the coupling constraints. In addition, we prove that the pricing game admits a unique variational equilibrium. We implement two online learning algorithms to compute solutions of the market mechanisms. A third fully distributed algorithm based on a proximal method is proposed to compute the Variational equilibrium solution of the pricing game. Finally, we run numerical simulations to analyse the market mechanism's economic properties and the convergence rates of the algorithms.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03824540
- URN
- urn:oai:HAL:hal-03824540v1
- Origin repository
- UNICA