The apparent cooperativity of some GPCRs does not necessarily imply dimerization.
- Creators
- Chabre, Marc
- Deterre, Philippe
- Antonny, Bruno
- Others:
- Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Immunologie Cellulaire ; Université Pierre et Marie Curie - Paris 6 (UPMC)
Description
When the binding of one ligand to its receptor is influenced by a second ligand acting on a different receptor, one might assume that the receptors dimerize, enabling allosteric interactions between ligands. This reasoning is frequently used to explain the complex binding curves of ligands of class A G-protein-coupled receptors (GPCRs). Here, we argue that in classical in vitro experiments the lack of GTP makes ligand-binding properties dependent on the available pool of G protein. Under such conditions a 1:1 GPCR-G-protein complex is stabilized, in which the G protein lacks a nucleotide and ligand binding is of high affinity. In vivo, this complex, a key intermediate of G-protein activation, never accumulates because of fast and irreversible GTP binding. In vitro, this complex creates interference in ligand binding when two monomeric GPCRs compete for the same G protein. Interestingly, this competition explains some in vivo effects of orphan GPCRs.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00418736
- URN
- urn:oai:HAL:hal-00418736v1
- Origin repository
- UNICA