Predicting PET-derived Demyelination from Multimodal MRI using Sketcher-Refiner Adversarial Training for Multiple Sclerosis
- Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Algorithms, models and methods for images and signals of the human brain (ARAMIS) ; Sorbonne Université (SU)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Service de neurophysiologie [CHU Saint-Antoine] ; CHU Saint-Antoine [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
- CHU Saint-Antoine [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
- The first author is funded by an Inria fellowship. The research leading to these results has received funding from the program "Investissements d'avenir" ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6) ANR-11 IDEX-004 (Agence Nationale de la Recherche-11- Initiative d'Excellence-004, project Learn-PETMR number SU-16-R-EMR-16), and from the "Contrat d'Interface Local" program (to Dr Colliot) from Assistance Publique-Hôpitaux de Paris (AP-HP). The clinical study wasfunded by specific grants from ELA (European Leukodystrophy Association, grant 2007-0481), and INSERM-DHOS (grant 2008-recherche clinique et translationnelle) and has been sponsored by APHP (Assistance Publique des Hôpitaux de Paris).Emilie Poirion has been funded by IUIS (Institut Universitaire d'Ingenerie pour la Santé, Sorbonne Université, and bothBenedetta Bodini and Emilie Poirion received funding from fondation ARSEP).
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
Multiple sclerosis (MS) is the most common demyelinating disease. In MS, demyelination occurs in the white matter of the brain and in the spinal cord. It is thus essential to measure the tissue myelin content to understand the physiopathology of MS, track progression and assess treatment efficacy. Positron emission tomography (PET) with [11C]PIB is a reliable method to measure myelin content in vivo. However, the availability of PET in clinical centers is limited. Moreover, it is expensive to acquire and invasive due to the injection of a radioactive tracer. By contrast, MR imaging is non-invasive, less expensive and widely available, but conventional MRI sequences cannot provide a direct and reliable measure of myelin. In this work, we therefore propose, to the best of our knowledge for the first time, a method to predict the PET-derived myelin content map from multimodal MRI. To that purpose, we introduce a new approach called Sketcher-Refiner generative adversarial networks (GANs) with specifically designed adversarial loss functions. The first network (Sketcher) generates global anatomical and physiological information. The second network (Refiner) refines and generates the tissue myelin content. A visual attention saliency map is also proposed to interpret the attention of neural networks. Our approach is shown to outperform the state-of-the-art methods in terms of image quality and myelin content prediction. Particularly, our prediction results show similar results to the PET-derived gold standard at both global and voxel-wise levels indicating the potential for clinical management of patients with MS.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02276634
- URN
- urn:oai:HAL:hal-02276634v1
- Origin repository
- UNICA