SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer
- Others:
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Application des ultrasons à la thérapie (LabTAU) ; Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)
- A*Star-Nus ; Clinical Imaging Research Centre
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS) ; Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
- Images et Modèles ; Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Description
We propose a new computer-aided detection scheme for prostate cancer screening on multiparametric magnetic resonance (mp-MR) images. Based on an annotated training database of mp-MR images from thirty patients, we train a novel support vector machine (SVM)-inspired classifier which simultaneously learns an optimal linear discriminant and a subset of predictor variables (or features) that are most relevant to the classification task, while promoting spatial smoothness of the malignancy prediction maps. The approach uses a ℓ1-norm in the regularization term of the optimization problem that rewards sparsity. Spatial smoothness is promoted via an additional cost term that encodes the spatial neighborhood of the voxels, to avoid noisy prediction maps. Experimental comparisons of the proposed ℓ1-Smooth SVM scheme to the regular ℓ2-SVM scheme demonstrate a clear visual and numerical gain on our clinical dataset.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01117682
- URN
- urn:oai:HAL:hal-01117682v1
- Origin repository
- UNICA