Nonnegative Matrix Factorization for Noninvasive Prediction of Catheter Ablation Outcome in Persistent Atrial Fibrillation
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre Hospitalier Princesse Grace de Monaco (CHPG) ; Monaco
Citation
Description
Despite the increasing popularity of catheter ablation (CA) for treat- ing atrial fibrillation (AF), the identification of patients who would actually benefit from the therapy remains a challenging open issue. This study aims at noninvasively predicting CA outcome by quanti- fying the spatio-temporal variability of the atrial activity signal mea- sured on the standard 12-lead electrocardiogram. The normalized mean square error (NMSE) between consecutive atrial segments and their principal component approximations is computed for each lead, as a recent noninvasive index of AF organization. In the present work, the multilead NMSE array is decomposed by means of a non- negative matrix factorization (NNMF) with two different initializa- tions. The reconstruction error between the original NMSE matrix and its low-rank NNMF approximation is taken as a classification feature. A dataset of persistent AF patients undergoing CA reveals that the proposed feature is able to predict the therapy's outcome with a notably higher level of statistical significance than recent single-lead indices.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00655798
- URN
- urn:oai:HAL:hal-00655798v1
- Origin repository
- UNICA