Published February 17, 2025
| Version v1
Journal article
PEGSGraph: A Graph Neural Network for Fast Earthquake Characterization Based on Prompt ElastoGravity Signals
Creators
Contributors
Others:
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])
- Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG) ; Le Mans Université (UM)-Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST) ; Nantes Université - pôle Sciences et technologie ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
Description
Abstract State‐of‐the‐art earthquake early warning systems use the early records of seismic waves to estimate the magnitude and location of the seismic source before the shaking and the tsunami strike. Because of the inherent properties of early seismic records, those systems systematically underestimate the magnitude of large events, which results in catastrophic underestimation of the subsequent tsunamis. Prompt elastogravity signals (PEGS) are low‐amplitude, light‐speed signals emitted by earthquakes, which are highly sensitive to both their magnitude and focal mechanism. Detected before traditional seismic waves, PEGS have the potential to produce unsaturated magnitude estimates faster than state‐of‐the‐art systems. Accurate instantaneous tracking of large earthquake magnitude using PEGS has been proven possible through the use of a Convolutional Neural Network (CNN). However, the CNN architecture is sub‐optimal as it does not allow to capture the geometry of the problem. To address this limitation, we design PEGSGraph, a novel deep learning model relying on a Graph Neural Network (GNN) architecture. PEGSGraph accurately estimates the magnitude of synthetic earthquakes down to 7.6–7.7 and determines their focal mechanisms (thrust, strike‐slip or normal faulting) within 70 s of the event's onset, offering crucial information for predicting potential tsunami wave amplitudes. Our comparative analysis on Alaska and Western Canada data shows that PEGSGraph outperforms PEGSNet, providing more reliable rapid magnitude estimates and enhancing tsunami warning reliability.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04951825
- URN
- urn:oai:HAL:hal-04951825v1
Origin repository
- Origin repository
- UNICA