Published August 6, 2010 | Version v1
Conference paper

Low-cost hardware implementations for discrete-time spiking neural networks

Others:
NEUROMATHCOMP ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-INRIA Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Laboratorio de Tecnologías de Información de Cinvestav Tamaulipas ; Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)
Neuromimetic intelligence (CORTEX) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Partially supported by the CorTex-Mex project and the SEP and the CONACYT of Mexico.

Citation

An error occurred while generating the citation.

Description

In this paper, both GPU (Graphing Processing Unit) based and FPGA (Field Programmable Gate Array) based hardware implementations for a discrete-time spiking neuron model are presented. This generalized model is highly adapted for large scale neural network implementations, since its dynamics are entirely represented by a spike train (binary code). This means that at microscopic scale the membrane potentials have a one-to-one correspondence with the spike train, in the asymptotic dynamics. This model also permit us to reproduce complex spiking dynamics such as those obtained with general Integrate-and-Fire (gIF) models. The FPGA design has been coded in Handel-C and VHDL and has been based on a fixed-point reconfigurable architecture, while the GPU spiking neuron kernel has been coded using C++ and CUDA. Numerical verifications are provided.

Additional details

Created:
December 3, 2022
Modified:
November 29, 2023