Published 2019
| Version v1
Book
The master equation and the convergence problem in mean field games
Contributors
Others:
- CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Collège de France - Chaire Équations aux dérivées partielles et applications ; Collège de France (CdF (institution))
- Princeton University Press
- ANR-12-BS01-0008,HJnet,Equations de Hamilton-Jacobi sur des structures hétérogènes et des réseaux(2012)
- ANR-14-ACHN-0030,Kimega,Modélisation cinétique de jeux à champs moyen(2014)
Description
The paper studies the convergence, as N tends to infinity, of a system of N coupled Hamilton-Jacobi equations, the Nash system. This system arises in differential game theory. We describe the limit problem in terms of the so-called " master equation " , a kind of second order partial differential equation stated on the space of probability measures. Our first main result is the well-posedness of the master equation. To do so, we first show the existence and uniqueness of a solution to the " mean field game system with common noise " , which consists in a coupled system made of a backward stochastic Hamilton-Jacobi equation and a forward stochastic Kolmogorov equation and which plays the role of characteristics for the master equation. Our second main result is the convergence, in average, of the solution of the Nash system and a propagation of chaos property for the associated " optimal trajectories " .
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01196045
- URN
- urn:oai:HAL:hal-01196045v1
Origin repository
- Origin repository
- UNICA