Published June 23, 2022
| Version v1
Publication
Aquaporin-4 Mediates Permanent Brain Alterations in a Mouse Model of Hypoxia-Aged Hydrocephalus
Description
Aquaporin-4 (AQP4) is the principal water channel in the brain being expressed in astrocytes and ependymal cells. AQP4 plays an important role in cerebrospinal fluid (CSF) homeostasis,
and alterations in its expression have been associated with hydrocephalus. AQP4 contributes to the
development of hydrocephalus by hypoxia in aged mice, reproducing such principal characteristics
of the disease. Here, we explore whether these alterations associated with the hydrocephalic state
are permanent or can be reverted by reexposure to normoxia. Alterations such as ventriculomegaly,
elevated intracranial pressure, and cognitive deficits were reversed, whereas deficits in CSF outflow and ventricular distensibility were not recovered, remaining impaired even one month after
reestablishment of normoxia. Interestingly, in AQP4−/− mice, the impairment in CSF drainage
and ventricular distensibility was completely reverted by re-normoxia, indicating that AQP4 has a
structural role in the chronification of those alterations. Finally, we show that aged mice subjected
to two hypoxic episodes experience permanent ventriculomegaly. These data reveal that repetitive
hypoxic events in aged cerebral tissue promote the permanent alterations involved in hydrocephalic
pathophysiology, which are dependent on AQP4 expression.
Additional details
Identifiers
- URL
- https://idus.us.es/handle//11441/134634
- URN
- urn:oai:idus.us.es:11441/134634
Origin repository
- Origin repository
- USE