Deep learning et authentification des textes
- Creators
- Brunet, Étienne
- Vanni, Laurent
- Others:
- BCL, équipe Logométrie : corpus, traitements, modèles ; Bases, Corpus, Langage (UMR 7320 - UCA / CNRS) (BCL) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Using Deep Learning to attribute authorship of French literary texts While problems of attributing authorship or dating a text can be tackled using the usual methods of literary historians, it is equally possible to turn to statistical and computing tools. A range of intertextual measures have been proposed to describe variation within and across authors. To date no single method can claim an uncontested superiority comparable to the use of DNA in paternity suits or criminal investigations. The present study asks whether artificial intelligence may be able to play this role, and seeks the answer in research involving two corpora. The first concerns 20th century French literature: a deep learning algorithm is used on 50 texts by 25 authors (e.g., Roman Gary, Émile Ajar) with the goal of matching the two texts by the same author. Deep learning is perfectly accurate. The second corpus is drawn from French classical drama and here the algorithm also categorically distinguishes and matches plays by Racine, Corneille, and Molière. The only errors concern two plays (the French texts of Molière's Don Garcia of Navarre and Racine's The Litigants) where the comic genre takes precedence over authorial voice. This paper investigates the mechanisms of deep learning (with a more detailed treatment planned for a subsequent publication).
Abstract (French)
Résumé. Deep Learning et authentification des textesLes problèmes de paternité ou de datation peuvent être abordés avec les moyens habituels de l'histoire littéraire, mais aussi en recourant aux ressources de la statistique et de l'informatique. Diverses mesures intertextuelles ont été proposées pour tenter de distinguer les distances intra (entre les textes d'un même auteur) et les distances inter (entre les auteurs). Malheureusement aucune jusqu'ici n'a pu prétendre au rang de juge suprême, comparable à l'ADN dans les recherches de paternité ou de criminalité. L'Intelligence artificielle peut-elle jouer ce rôle? C'est l'objet de la présente étude, menée conjointement dans deux corpus. Dans le premier, on aborde le roman au XXème siècle en proposant à l'algorithme du Deep Learning un panel de 50 textes et de 25 écrivains (parmi lesquels Roman Gary et Émile Ajar). Il s'agit de reconnaître les textes qui ont le même auteur. Le Deep Learning réussit l'épreuve sans faillir. Fort de cette réussite, le même algorithme est appliqué au théâtre classique. La conclusion est catégorique : Racine, Corneille et Molière se distinguent parfaitement sauf dans deux cas (Don Garcie et Les Plaideurs) où le genre vient brouiller la signature. Le présent article s'interroge sur les mécanismes mis en œuvre dans le Deep Learning. Un développement plus étendu est prévu dans une publication ultérieure.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02561039
- URN
- urn:oai:HAL:hal-02561039v1
- Origin repository
- UNICA