Published June 2017
| Version v1
Conference paper
Numerical analysis of the DDFV method for the Stokes problem with mixed Neumann/Dirichlet boundary conditions
Creators
Contributors
Others:
- COmplex Flows For Energy and Environment (COFFEE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Université Côte d'Azur (UCA)
Description
The aim of this work is to analyze " Discrete Duality Finite Volume " schemes (DDFV for short) on general meshes by adapting the theory known for the linear Stokes problem with Dirichlet boundary conditions to the case of Neu-mann boundary conditions on a fraction of the boundary. We prove well-posedness for stabilized schemes and we derive some error estimates. Finally, we illustrate some numerical results in which we compare stabilized and unstabilized schemes.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01502397
- URN
- urn:oai:HAL:hal-01502397v1
Origin repository
- Origin repository
- UNICA