Tackling issues in the path toward clinical translation in brain conditioning: Potential offered by nutraceuticals
- Others:
- Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Brief periods of ischemia have been shown in many experimental setups to provide tolerance against ischemia in multiple organs including the brain, when administered before (preconditioning) or even after (postconditioning) the normally lethal ischemia. In addition to these so-called ischemic conditionings, many pharmacological and natural agents (e.g., chemicals and nutraceuticals) can also act as potent pre-and post-conditioners. Deriving from the original concept of ischemic preconditioning, these various conditioning paradigms may be promising as clinical-stage therapies for prevention of ischemic-related injury, especially stroke. As no proven experimentally identified strategy has translated into clinical success, the experimental induction of neuroprotection using these various conditioning paradigms has raised several questions, even before considering translation to clinical studies in humans. The first aim of the review is to consider key questions on preclinical studies of pre-or post-conditioning modalities including those induced by chemical or nutraceuticals. Second, we make the argument that several key issues can be addressed by a novel concept, nutraceutical preconditioning. Specifically, α-linolenic acid (alpha-linolenic acid [ALA] an omega-3 polyunsaturated fatty acid), contained in plant-derived edible products, is essential in the daily diet, and a body of work has identified ALA as a pre-and post-conditioner of the brain. Nutritional intervention and functional food development are an emerging direction for preventing stroke damage, offering the potential to improving clinical outcomes through activation of the endogenous protective mechanisms known collectively as conditioning.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02265208
- URN
- urn:oai:HAL:hal-02265208v1
- Origin repository
- UNICA