Published 2019 | Version v1
Report

Randomized incremental construction of Delaunay triangulations of nice point sets

Others:
Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
Geometric Algorithms and Models Beyond the Linear and Euclidean realm (GAMBLE ) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
INRIA
ANR-17-CE40-0017,ASPAG,Analyse et Simulation Probabilistes des Algorithmes Géométriques(2017)
European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)

Description

Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms that are both simple and efficient in theory and in practice. Randomized incremental constructions are most of the time space and time optimal in the worst-case, as exemplified by the construction of convex hulls, Delaunay triangulations and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst-case. For example, it is known that the Delaunay triangulations of nicely distributed points in E d or on polyhedral surfaces in E3 has linear complexity, as opposed to a worst-case complexity of Θ(n d/2) in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is O(n log n), which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023