On the minimum number of arcs in 4-dicritical oriented graphs
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
Description
The dichromatic number of a digraph is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph is ‐dicritical if and each proper subdigraph of satisfies . For integers and , we define (resp., ) as the minimum number of arcs possible in a ‐dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that . They also conjectured that there is a constant such that for and large enough. This conjecture is known to be true for . In this work, we prove that every 4‐dicritical oriented graph on vertices has at least arcs, showing the conjecture for . We also characterise exactly the 4‐dicritical digraphs on vertices with exactly arcs.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/hal-04664504
- URN
- urn:oai:HAL:hal-04664504v1
- Origin repository
- UNICA