Une implémentation GPU de la méthode de recherche approximative FlyHash
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Côte d'Azur (UCA)
- DGA Maîtrise de l'Information
Description
FlyHash is a locality-sensitive hashing algorithm inspired by the nervous system of the Drosophila fly. It has demonstrated to be particularly effective for similarity search, especially in the federated context where multiple players collaborate to solve a statistical learning task. FlyHash mainly relies on a process called winner-take-all, which is used to binarize information. However, the implementation of this process is a major challenge and limits the algorithm's usage in processing large data streams. In this paper, we propose a simple algorithm to make the winner-take-all operation efficient on GPUs. We create a FlyHash adaptation suitable for the CUDA architecture. We assess the speed of this version experimentally and present a comparison with the CPU version of FlyHash.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04328529
- URN
- urn:oai:HAL:hal-04328529v1
- Origin repository
- UNICA