A one-dimensional coagulation-fragmentation process with a dynamical phase transition
- Creators
- Bernardin, Cedric
- Toninelli, Fabio Lucio
- Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire de Physique de l'ENS Lyon (Phys-ENS) ; École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Description
We introduce a reversible Markovian coagulation-fragmentation process on the set of partitions of $\{1,\ldots,L\}$ into disjoint intervals. Each interval can either split or merge with one of its two neighbors. The invariant measure can be seen as the Gibbs measure for a homogeneous pinning model \cite{cf:GBbook}. Depending on a parameter $\lambda$, the typical configuration can be either dominated by a single big interval (delocalized phase), or be composed of many intervals of order $1$ (localized phase), or the interval length can have a power law distribution (critical regime). In the three cases, the time required to approach equilibrium (in total variation) scales very differently with $L$. In the localized phase, when the initial condition is a single interval of size $L$, the equilibration mechanism is due to the propagation of two ''fragmentation fronts'' which start from the two boundaries and proceed by power-law jumps.
Additional details
- URL
- https://ens-lyon.hal.science/ensl-00608829
- URN
- urn:oai:HAL:ensl-00608829v2
- Origin repository
- UNICA