Tensor methods for multisensor signal processing
- Others:
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA) ; Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
Description
Over the last two decades, tensor-based methods have received growing attention in the signal processing community. In this work, we propose a comprehensive overview of tensor-based models and methods for multisensor signal processing. We present for instance the Tucker decomposition, the Canonical Polyadic Decomposition (CPD), the Tensor-Train Decomposition (TTD), the Structured TTD, including Nested Tucker Train (NTT), as well as the associated optimization strategies. More precisely, we give synthetic descriptions of state-of-art estimators as the Alternating Least Square (ALS) algorithm, the High-Order SVD (HOSVD), and of more advanced algorithms as the Rectified ALS, the TT-SVD/TT-HSVD and the Joint dImensionally Reduction And Factor retrieval Estimator (JIRAFE) scheme. We illustrate the efficiency of the introduced methodological and algorithmic concepts in the context of three important and timely signal processing-based applications: the Direction-Of-Arrival (DOA) estimation based on sensor arrays, multidimensional harmonic retrieval and MIMO wireless communication systems.
Abstract
International audience
Additional details
- URL
- https://hal.univ-lille.fr/hal-03024673
- URN
- urn:oai:HAL:hal-03024673v1
- Origin repository
- UNICA