Published May 2019
| Version v1
Journal article
A concentration inequality for inhomogeneous Neymann-Scott point processes
- Others:
- Université du Québec à Montréal = University of Québec in Montréal (UQAM)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
In this note, we prove some non-asymptotic concentration inequalities for functionals, called innovations, of inhomogeneous Neymann-Scott point processes, a particular class of spatial point process models. Innovation is a functional built from the counting measure minus its integral compensator. The result is then applied to obtain almost sure rate of convergence for such functionals.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02456693
- URN
- urn:oai:HAL:hal-02456693v1
- Origin repository
- UNICA