Published 2005
| Version v1
Conference paper
Formal certification of arithmetic filters for geometric predicates
Creators
Contributors
Others:
- Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Description
Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order for these predicates to be exact, it is important to rule out all the numerical situations where floating-point computations could lead to wrong results. Taking into account all the potential problems is a tedious work to do by hand. We study in this paper a floating-point implementation of a filter for the orientation-2 predicate, and how a formal and partially automatized verification of this algorithm avoided many pitfalls. The presented method is not limited to this particular predicate, it can easily be used to produce correct semi-static floating-point filters for other geometric predicates.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/inria-00344518
- URN
- urn:oai:HAL:inria-00344518v1
Origin repository
- Origin repository
- UNICA