Published August 26, 2008
| Version v1
Conference paper
Regularization of inverse problems with adaptive discrepancy terms: application to multispectral data
Creators
Contributors
Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe IMAGES-CREATIVE ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Dimitri Van De Ville and Vivek K. Goyal and Manos Papadakis
Description
n this paper, a general framework for the inversion of a linear operator in the case where one seeks several components from several observations is presented. The estimation is done by minimizing a functional balancing discrepancy terms by regularization terms. The regularization terms are adapted norms that enforce the desired properties of each component. The main focus of this paper is the definition of the discrepancy terms. Classically, these are quadratic. We present novel discrepancy terms adapt to the observations. They rely on adaptive projections that emphasize important information in the observations. Iterative algorithms to minimize the functionals with adaptive discrepancy terms are derived and their convergence and stability is studied. The methods obtained are compared for the problem of reconstruction of astrophysical maps from multifrequency observations of the Cosmic Microwave Background. We show the added flexibility provided by the adaptive discrepancy terms.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00394171
- URN
- urn:oai:HAL:hal-00394171v1
Origin repository
- Origin repository
- UNICA