Published June 7, 2019 | Version v1
Journal article

P-FPT algorithms for bounded clique-width graphs

Others:
Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
National Institute for Research and Development in Informatics [Bucharest] (ICI)
ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)

Description

Recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as the Strong Exponential Time Hypothesis. According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms. A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms with polynomial dependency in the fixed parameter (P-FPT). Applying this technique to clique-width, an important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems, distance problems and maximum matching. We give hardness results and P-FPT algorithms, using clique-width and some of its upper bounds as parameters. We believe that our most important result is an algorithm in $O(k^4 · n + m)$-time for computing a maximum matching where $k$ is either the modular-width of the graph or the $P_4$-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs. Our algorithms are based on preprocessing methods using modular decomposition and split decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 22, 2023