Fed-BioMed: Open, Transparent and Trusted Federated Learning for Real-world Healthcare Applications
- Creators
- Cremonesi, Francesco
- Vesin, Marc
- Cansiz, Sergen
- Bouillard, Yannick
- Balelli, Irene
- Innocenti, Lucia
- Silva, Santiago
- Ayed, Samy-Safwan
- Taiello, Riccardo
- Kameni, Laetita
- Vidal, Richard
- Orlhac, Fanny
- Nioche, Christophe
- Lapel, Nathan
- Houis, Bastien
- Modzelewski, Romain
- Humbert, Olivier
- Önen, Melek
- Lorenzi, Marco
- Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Accenture Labs [Sophia Antipolis]
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO ) ; Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Centre de Lutte Contre le Cancer Henri Becquerel Normandie Rouen (CLCC Henri Becquerel)
- Université Côte d'Azur (UCA)
- Eurecom [Sophia Antipolis]
Description
The real-world implementation of federated learning is complex and requires research and development actions at the crossroad between different domains ranging from data science, to software programming, networking, and security. While today several FL libraries are proposed to data scientists and users, most of these frameworks are not designed to findseamless application in medical use-cases, due to the specific challenges and requirements of working with medical data and hospital infrastructures. Moreover, governance, design principles, and security assumptions of these frameworks are generally not clearly illustrated, thus preventing the adoption in sensitive applications. Motivated by the current technological landscape of FL in healthcare, in this document we present Fed-BioMed: a research and development initiative aiming at translating federated learning (FL) into real-world medical research applications. We describe our design space, targeted users, domain constraints, and how these factors affect our current and future software architecture.
Additional details
- URL
- https://inria.hal.science/hal-04081557
- URN
- urn:oai:HAL:hal-04081557v1
- Origin repository
- UNICA