Published 2007 | Version v1
Conference paper

A Rapid Heuristic for Scheduling Non-Preemptive Dependent Periodic Tasks onto Multiprocessor

Other:
Models and methods of analysis and optimization for systems with real-time and embedding constraints (AOSTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

We address distributed real-time applications represented by systems of non-preemptive dependent periodic tasks. This system is described by an acyclic directed graph. Because the distribution and the scheduling of these tasks onto a multiprocessor is an NP-hard problem we propose a greedy heuristic to solve it. Our heuristic sequences three algorithms: assignment, unrolling, and scheduling. The tasks of the same, or multiple, periods are assigned to the same processor according to a mixed sort. Then, the initial graph of tasks is unrolled, i.e. each task is repeated according to the ratio between its period and the least common multiple of all periods of tasks. Finally, the tasks of the unrolled graph are distributed and scheduled onto the processors where they have been assigned. Then, we give the complexity of this heuristic, and we illustrate it with an example. A performance analysis comparing our heuristic with an optimal Branch and Cut algorithm concludes that our heuristic is effective in terms of scheduling success ratio and speed.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 28, 2023