Published February 2012
| Version v1
Journal article
Nearly round spheres look convex
- Others:
- Department of Mathematics and Statistics [Texas Tech] ; Texas Tech University [Lubbock] (TTU)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut Camille Jordan [Villeurbanne] (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
Description
We prove that a Riemannian manifold (M, g), close enough to the round sphere in the C4 topology, has uniformly convex injectivity domains so M appears uniformly convex in any exponential chart. The proof is based on the Ma-Trudinger-Wang nonlocal curvature tensor, which originates from the regularity theory of optimal transport.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00923321
- URN
- urn:oai:HAL:hal-00923321v1
- Origin repository
- UNICA