Published May 28, 2019
| Version v1
Journal article
Parabolic bursting, spike-adding, dips and slices in a minimal model
- Others:
- Mathématiques pour les Neurosciences (MATHNEURO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)) ; Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-16-CE40-0013,ISDEEC,Interactions entre Systèmes Dynamiques, Equations d'Evolution et Contrôle(2016)
Description
A minimal system for parabolic bursting, whose associated slow flow is integrable, is presented and studied both from the viewpoint of bifurcation theory of slow-fast systems, of the qualitative analysis of its phase portrait and of numerical simulations. We focus the analysis on the spike-adding phenomenon. After a reduction to a periodically forced one-dimensional system, we uncover the link with the dips and slices first discussed by J.E. Littlewood in his famous articles on the periodically forced van der Pol system.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01911267
- URN
- urn:oai:HAL:hal-01911267v1
- Origin repository
- UNICA